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underdetermined estimation problem, where there are more 
unknown parameters than available sensor measurements. A 
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parameter vector of appropriate dimension to enable estima-
tion by a Kalman filter, while minimizing the estimation error 
in the parameters of interest. Tuning parameter selection is 
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FIG. 1 
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State variables, health parameters, and actuators 

State variables Health parameters 	Actuators 
Nf — fan speed Fan efficiency 	Wf — fuel flow 
Nc — core speed Fan flow capacity* 	VSV — variable stator vane 

LPC efficiency* 	VBV —variable bleed valve 
LPC. flow capacity 
HPC efficiency* 
HPC flow capacity* 
HPT efficiency* 
HPT flow capacity* 
LPT efficiency 
LPT flow capacity* 

* Health parameters selected as tuners in conventional estimation approach 

FIG. 2 

Sensed outputs and standard deviation as percent of operating point trim values 

Sensed output 	 Standard deviation (%) 

Nl'— fan speed 0.25% 
Nc — core speed 0.25% 
P24 — HPC inlet total pressure 0.50% 
T24 — HPC inlet total temperature 0.75% 
Ps30 — HPC exit static pressure 0.50% 
T30 — HPC exit total temperature 0.75% 
T48 — Exhaust gas temperature 0.75% 

FIG. 3 



U.S. Patent 	Feb. 26, 2013 	Sheet 3 of 7 	 US 8,386,121 B1 

Estimated auxiliary parameters  
Auxiliary parameter 
T40 — Combustor exit temperature 
T50 — LPT exit temperature 
Fn — Net thrust 
SmLPC — LPC stall margin 

FIG. 4 

Auxiliary parameter squared estimation errors  

Tim.-re 	 Rrrnr 	
T40 	T50 	Fn 	SmLPC 

SVD tuner 
selection 

smatic 
ner 

Theor. sqr. bias 0.00 512.46 4.05 5.28 
Theor. variance 65.99 67.21 0.80 1.31 
Theor. sqr. error 65.99 579.67 4.86 6.59 
Exper. sqr. error 66.20 579.39 4.98 6.76 
Theor. sqr. bias 0.00 87.81 0.66 0.95 
Theor. variance 17.49 18.55 0.13 0.35 
Theor. sqr. error 17.49 106.35 0.79 1.30 
Exper. sqr.' error 17.61 106.54 0.86 1.35 

FIG. 5 
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Subset of health parameters 	 'Estimate 
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FIG. 6 
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FIG. 7 
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FIG. 8 
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FIG. 9 
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Health parameter % squared estimation errors (nominal noise)  
Estimato r Error type  hl h2  0 h4 h5 h6 h7 h8 h9 NO Sum  

Theor, squared bias 126 1 A8 2.28 1:.22 6.00 0.00 0.74 0.00 1.97 3.06 12.00 , 

Kalman Theor: variance 0.73 0.19 0.80 0:45 0.40 0.68 0.21 0.21 034 0.08 4.09 	̀ 

filter Theor. squared' 2.00 1.67 3.07 1.66 0.40 0.68 0.96 0.21 2.32 3.14 16.09 
Exper. squared 1.82 1.60 2.77 1.59 0.41 0.68 0.97 0.21 2.13 3.15 15.31 

Theor. squared bias 2.42 1.75 3 53 1.90 0.47 0.96 1.00 0.16 2.47 3.17 17.81 

MAP 'Theor. variance 0.22 0.27 0.16 0.64 0.69 0.71 0.36 0.36 0.17 0.09 3.68 
estimator Theor. squared 2.63 2.02 3.69 2.54 L16 1.67 136 0.52 2.64 326 21A8 

Exper. squared 2.52 1.89 3.44 2.45 1.14 1.57 1.34 0.51 2.49 3.24 20.60 

FIG. 10 

Health parameter % souared estimation errors (reduced noise 

Estimator Error typc hl h2 h3 h4 h5 h6 h 7  h8 h9 h10 Sum  

Theor. squared bias 1.26 1.48 2.28 1`.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 

Kalman Theor. variance 0.02 0.00 ` 0.03 0.01 0.01 0.02 0.00 0,00 0.01 0.00 0.10 

filter Theor! squared 1.29 1.48 2.30 1.22 0.01 0.02 0.74 0.00 1.98 3.06 12.10 

Exper: squared 1.13 1.41 : 1.97 1`.16 0.01 0.02 - 	 0.75 0.00 1.79 3.08 11.31 

Theor. squared bias 1.26 1.48 128 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 

MAP Theor. variance 0.03 0.00 0.04 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.13 
estimator Theor. squared 1.30 1.48 2.32 1.22 0.01 0.02 0.74 0.00 1.99 3.06 12.14 

Exper. squared 1.14 1.41 1.98 1.17 0.01 0.02 0.75 0.00 1.79 3.08 11.34 

FIG. 11 
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q=V*h, 	 (1) 

where the transformation matrix, V*, is selected applying 
singular value decomposition to capture the overall effect of 50 
the larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. 

SUMMARY 
55 

A new linear point design technique which applies a sys-
tematic approach to optimal tuning parameter selection is 
presented. This technique defines a transformation matrix, 
V*, used to construct a tuning parameter vector which is a 
linear combination of all health parameters, and of low 60 
enough dimension to enable Kalman filter estimation. The 
new approach optimally selects the transformation matrix, 
V*, to minimize the theoretical steady-state estimation error 
in the engine performance parameters of interest. There is no 
known closed form solution for optimally selecting V* to 65 
satisfy this objective. Therefore, a multivariable iterative 
search routine is applied to perform this function. 
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OPTIMIZED TUNER SELECTION FOR 	 BRIEF DESCRIPTION OF THE SEVERAL 
ENGINE PERFORMANCE ESTIMATION 	 VIEWS OF THE DRAWINGS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application claims benefit from U.S. Provisional 
Patent Application No. 61/247,325, entitled "OPTIMAL 
TUNER SELECTION," filed on Sep. 30, 2009, which is 
hereby incorporated by reference in its entirety. 

BACKGROUND 

An emerging approach in the field of aircraft engine con-
trols and health management is the inclusion of real-time 
on-board models for the in-flight estimation of engine perfor-
mance variations. This technology, typically based on Kal-
man filter concepts, enables the estimation of unmeasured 
engine performance parameters that can be directly utilized 
by controls, prognostics and health management applica-
tions. A challenge which complicates this practice is the fact 
that an aircraft engine's performance is affected by its level of 
degradation, generally described in terms of unmeasurable 
health parameters such as efficiencies and flow capacities 
related to each major engine module. Through Kalman filter-
based estimation techniques, the level of engine performance 
degradation can be estimated, given that there are at least as 
many sensors as parameters to be estimated. However, in an 
aircraft engine the number of sensors available is typically 
less than the number of health parameters presenting an 
under-determined estimation problem. A common approach 
to address this shortcoming is to estimate a sub-set of the 
health parameters, referred to as model tuning parameters. 
While this approach enables on-line Kalman filter-based esti-
mation, it can result in "smearing" the effects of unestimated 
health parameters onto those which are estimated, and in turn 
introduce error in the accuracy of overall model-based per-
formance estimation applications. 

Recently, a new method has been presented based on sin-
gular value decomposition that selects a model tuning param-
eter vector of low-enough dimension to be estimated by a 
Kalman filter. The model tuning parameter vector, defined as 
q, was constructed as a linear combination of all health 45 
parameters, h, given by the equation 

A, Axh , Ax, System Matrices 

B, 13, 13, 

C, Cxh, C, 
D, F, Fxh , Fx, 
G, L, M, N 
C-MAPSS Commercial ModularAero-Propulsion 

System Simulation 
Fn Net Thrust 
Gxh, C-- Gh, G, Estimation bias matrices 
H Matrix which relates health parameter 

effects to steady-state engine outputs 
HPC High pressure compressor 
HPT High pressure turbine 
I Identity matrix 
K_ Kalman filter gain 
LPC Low pressure compressor 
LPT Low pressure turbine 
MAP Maximum a posteriori 
Nf Fan speed 
Nc Core speed 
Ph , P, Health & auxiliary parameter covariance matrices 
P24 HPC inlet total pressure 
Ps30 HPC exit static pressure 

'% ,h 

 p _ 	p Covariance matrices of estimated parameters 
 x4,k o 	~ g ~ 

P_ Kalman filter state estimation covariance matrix 
Q, Qxh , Q e  Process noise covariance matrices 
R Measurement noise covariance matrix 

Objects and advantages together with the operation of the 
5  invention may be better understood by reference to the 

detailed description taken in connection with the following 
illustrations, wherein: 

FIG. 1 illustrates a flow chart for performing an iterative 
optimal search; 

10 	FIG. 2 illustrates a table of state variables, health param- 
eters, and actuators; 

FIG. 3 illustrates a table of sensed outputs and standard 
deviation as percent of operating point trim values; 

FIG. 4 illustrates a table of estimated auxiliary parameters; 
15 	FIG. 5 illustrates a table of auxiliary parameter squared 

estimation errors; 
FIG. 6 illustrates a first graph of tuner comparisons; 
FIG. 7 illustrates a second graph of tuner comparisons; 
FIG. 8 illustrates a third graph of tuner comparisons; 

20 	FIG. 9 illustrates a fourth graph of tuner comparisons; 
FIG. 10 illustrates a table of health parameter squared 

estimation errors at nominal noise levels; 
FIG. 11 illustrates a table of health parameter squared 

estimation errors at reduced noise levels; and 
25 	FIG. 12 illustrates a graph of tuner impact on estimator 

response. 

DETAILED DESCRIPTION 

30 Reference will now be made in detail to exemplary 
embodiments of the present invention, examples of which are 
illustrated in the accompanying drawings. It is to be under-
stood that other embodiments may be utilized and changes 
may be made without departing from the respective scope of 

35 the present invention. 
The following includes definitions of selected terms 

employed herein. The definitions include various examples 
and/or forms of components that fall within the scope of a 
term and that may be used for implementation. The examples 

40 are not intended to be limiting. Both singular and plural forms 
of terms may be within the definitions. 
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-continued 

SmLPC LPC Stall margin 
T24 HPC inlet total temperature 
T30 HPC exit total temperature 
T40 Combustor exit temperature 
T48 Exhaust gas temperature 
T50 LPT exit temperature 
V. Transformation matrix relating hk  to qk  
VSV Variable stator vane 
VBV Variable bleed valve 
Wf Fuel flow 
W, Auxiliary parameter weighting matrix 
hk  Health parameter vector 
qk  Kalman filter tuning parameter vector 
uk Actuator command vector 
vk Measurement noise vector 
Wk, wh k, wxh k  Process noise vectors 
xk  State vector 
xxh ,k  Augmented state vector (xk and hk) 
xxg k  Reduced order state vector (xk and qk) 

yk Vector of measured outputs 
zk  Vector of unmeasured (auxiliary) outputs 
Exg k  residual vector (estimate minus its expected value) 
Subscripts 

k 	 Discrete time step index 
xh 	 Augmented state vector (x and h) 
xq 	 Reduced order state vector (x and q) 
ss 	 Steady-state value 
Superscripts 

f Pseudo-inverse 
Estimated value 
Error value 

— Mean value 
T Transpose 
Operators 

E[-] Expected value of argument 

tr 1.1 Trace of matrix 
SSEE(-) Sum of squared estimation errors 
WSSEE(-) Weighted sum of squared estimation errors 

Matrix Frobenius norm 

The discrete linear time -invariant engine state space equa-
tions about a linear design point are given as: 

x k+ 1 —, 4 x k+B u,+L h k+ W k, 

yk Cxk+Duk +Mhk+Vk 

zk Fx k+Fuk+Nhk 	 (2) 

where k is the time index, x is the vector of state variables, u 
is the vector of control inputs, y is the vector of measured 
outputs, and z is the vector of auxiliary (unmeasured) model 
outputs. The vector h represents the engine health parameters, 
which induce shifts in other variables as the health parameters 
deviate from their nominal values. The vectors w and v are 
uncorrelated zero -mean white noise input sequences. Q will 
be used to denote the covariance of w, and R to denote the 
covariance ofv. The matrices A, B, C, D, F, G, L, M, andN are 
of appropriate dimension. The health parameters, represented 
by the vector h, are unknown inputs to the system. They may 
be treated as a set of biases, and are thus modeled without 
dynamics. With this interpretation Eq. (2) can be written as: 

Lhk +1 ~ — L 0  1  hk ~ + ~ O J uk+ ~ Wh , k 	 3)  
Axh xxh,k 	Bxh 	"xh,k  

4 
-continued 

X 
Yk=[C M] 

k I 
 +DUk+Vk 

-_ C- _'hk , 

xxh,k 
5 

Cxhxxh,k +Duk +Vk 

xk 
zk = [ F N ] 

h 
 + Guk  

xh '—k- 
xxh,k 

10 
= F hxxh,k + Guk 

The vector wxh  is zero-mean white noise associated with 
the augmented state vector, [XT  hT]T with a covariance of Qsh. 

15 Wxh consists of the original state process noise, w, concat-
enated with the process noise associated with the health 
parameter vector, wh . 

20 	

~ 
Wk 	 (4) 

Wxh,k = 
Wh,k 

The eigenvalues of Axh  consist of the original eigenvalues 
25 of A plus an additional dim(h) eigenvalues located at 1.0 on 

the unit circle due to the augmentation . Thus, the new aug-
mented system given in Eq. (3) has at least as many eigenval-
ues located on the unit circle as there are elements of h. Once 
the h vector is appended to the state vector, it may be directly 

30 estimated, provided that the realization in Eq. (3) is observ-
able. Using this formulation, the number of health parameters 
that can be estimated is limited to the number of sensors, the 
dimension of y. Since in an aircraft gas turbine engine there 
are usually fewer sensors than health parameters , the problem 

35 becomes one of choosing the best set of tuners for the appli-
cation . A methodology is presented for the optimal selection 
of a model tuning parameter vector , q, of low-enough dimen-
sion to be estimated by a Kalman filter , while minimizing the 
estimation error in the model variables of interest. The steps 

40 in this process include construction of the reduced-order state 
space model, formulation of the Kalman filter estimator, cal-
culation of the mean sum of squared estimation errors, and 
optimal selection of the transformation matrix to minimize 
the estimation error. 

45 	The first step is to construct a reduced-order state space 
model. The model tuning parameter vector, q, is constructed 
as a linear combination of all health parameters , h, given by 

q=V*h 	 (5) 

50 where qEP- , hEPP, m<p, and V* is an mxp transformation 
matrix of rank m , applied to construct the tuning parameter 
vector. An approximation of the health parameter vector, h, 
can be obtained as 

55 	h=V*tq 
	

(6) 

where V*t is the pseudo-inverse of V*. Substituting Eq. (6) 
into Eq. (3) yields the following reduced order state space 
equations which will be used to formulate the Kalman filter: 

60 

	

xk+1

I 

 = 

~ 
A LV' J 

~ 
xk l + ~ B l uk  + ~ 9k 1 	 (7) 

qk+i 	0 	1 	_Qk_J 	0 	W ,k J 

	

A, 

	xxh,k 	
Bx9 	-

-'xq k_ 

65 	 = Ax9xx9,k + Bx9 uk + Wx9,k 
= Axhxxh,k + Bxhuk +Wxh,k 
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-continued 
x 

Yk = K Mr'] 
k 
 +DUk +Vk 

Cx9 	
_ Qk 

xx9.k 

=C9xx9 k+DUk +Vk 

Zk = [ E NV I 
xk

+ CUk  

zg 
	Qk 

xx9.k 

= Fgxxq k + Guk  

6 
ance. The estimation error bias vectors are equivalent to the 
mean estimation error vectors defined as: 

xxh,k = ER h,kI = ER h,k - xxh,k] 
	 (14) 

Zk = E[Zk] = E[Zk — Zk] 

where the operator E[•] represents the expected value of the 
10  argument. The variance of the estimates can be found by 

constructing their respective estimation covariance matrices: 

The state process noise, wxq, and its associated covariance, 
Qxq, for the reduced order system are calculated as: 	15  Pzhk = E[(xxh,k — ER h,k 1)(xxh,k — ER h,k]) T  ] 	

(15) 

P2 ,k = E[(Zk — E[Zk 1) (Zk — E[Zk ])T] 

Diagonal elements of the covariance matrices will reflect the 
variance in individual parameter estimates, while off-diago-
nal elements reflect the covariance between parameter esti-
mates. The overall sum of squared estimation errors (SSEE) 
can be obtained by combining the estimation error bias and 

	

Next, the Kalman filter estimator is formulated. Here, 	estimation variance information as 

steady-state Kalman filtering may be applied. This means that 25 	SSEE(Qxh,k) X_-xh,k x  h,k+t {P,~ ,k} 
while the Kalman filter is a dynamic system, the state estima- 
tion error covariance matrix and the Kalman gain matrix are 	SSEE(27,)-k  2k+tr[P2,k] 	 (16) 

invariant instead of updating these matrices each time step 	where tr{•} represents the trace (sum of the diagonal ele- 
they are held constant. Given the reduced order linear state 	ments) of the matrix. As described herein, theoretical values 
space equations shown in Eq. (7), the state estimation error 30 for each error component will be derived assuming steady- 
covariance matrix, P_ is calculated by solving the following 	state, open-loop (u -0) operating conditions. First, the estima- 
Ricatti equation: 	 tion error bias is derived, followed by a derivation of the 

P-=AxgP-Ax,T-A xg P-Cx,T(Cxg P-C gT+R)- 	 estimation va riance. 
,c ,P-4x47+Qxg 	 (9) 	The estimation error biases, X xh,x  and zk, can beanalytically 

The steady-state Kalman filter gain, K_ can then be calcu- 35 derived for an arbitrary health parameter vector, h, at steady-

lated as follows: 	
state operating conditions. This is done taking advantage of 
the following expected value properties at steady-state open- 

x =P cxq  T(c 	xqqP  c T+R)- ' 	 (10) 	loop operating conditions 

and, assuming steady-state, open-loop operation (u -0), the 40 E[xk+ ,I=E[x l-x==  

Kalman filter estimator takes the following form 
E[hk=h 

	

_Qx4,kA, 4x4,k1+K_(y7,Cy d
x4

q
x4,k1) 
	

(11) 

 

—  
	

— 

The reduced order state vector estimate, Xxq,k, produced by 
E[xxh,xI=xxh,,, 

Eq. (11) can be used to produce an estimate of the augmented 45  E[yj= 

state vector, and the auxiliary parameter vector as follows: 
E[z,l -z,, 

I 
	0 	 (12) E[uk]-0 

xxhk - [0 
	V.t ]xx9,k 	 50 

E[wk]=0 

Zk 	E NV`t]xxgk 

E[vk]=0 

The estimation errors in Xxh,x  and Zk  are defined as the 55 E[kxg,kl =E[Qxg, 	L/ -xxq" 
difference between the estimated and actual values: 

E[-~xh,k/ —Qxh, 

_~xh,k ~xh,k xxh,k 

E[fkl -Z-" 	 (17) 

4_4=4 	 (13) 60  where the subscript "ss" denotes steady-state operation. By 

Due to the under-determined nature of the estimation prob- taking expected values of Eq. (2), x_, y_ and z_ can be 

lem, it will be impossible for the Kalman filter estimator to written as functions of the health parameter vector h 

completely restore all information when transforming q into Eft, , =A.E[x,7+B-E[ukl+E-E[hkl+E[wk] 

h. As such, the Kalman filter will be a biased estimator, 
meaning the expected values of z,,,, and 2, will be non-zero. 65 x== =,yx==+Eh 

The estimation errors can be considered to consist of two 
components: an estimation error bias, and an estimation vari- x==(z-A)- ' Eh 	 (1 s) 

Wx9,k = 0 V' Wxh k = 
0 V' Wh,k 

Qxq 
 = [ 0 V* 

]Qxh[ 
 0 V* 

IT 

	

20 
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-continued 
[ F NV*t] (I —Axq  + K_Cxg Axq )

—i 
 ... x 

zss= K—[C(I—A)—i L+M] ... — 

(19) 5 	 [F(I—A)—'L+N] 

G 

zss  = Gz h 

7 
E[ykJ= 6E[xkl+D-E[ukl+M-E[hkl+E[vk] 

y,, — Cx,,+Mh 

y,, —  (C(I—A) —i  L+M)h 

E[zk1 — F-E[xk1+G-E[uj+NE[hk] 

Z_ Fx,,+Nh 

z,, — (F(I—A) —iL+N)h 	 (20) 

Next, by taking expected values of both sides of Eq. (11), the 
expected value of x,

, 
can be obtained as a function of y ss : 

E[R q,k1 —,4,-E[xxq,k 11... 

+K_(E[yj— Cx,4xq -E[-Oxq,k-1]) 

10 	The estimation error bias equations given in Eqs. (23) and 
(24) are functions of an arbitrary health parameter vector, h. 
As such they are representative of the parameter estimation 
error biases in a single engine, at a given point in its lifetime 

15  of use where its deterioration is represented by the health 
parameter vector h. The average sum of squared estimation 
error biases across a fleet of engines can be calculated as 

xx q_— A xq xxq,,,+K-(y,,—  CxgAx gxxq,,,) 
	

20 

xx,_ (1  Axq+K_CxgAxq)
-1 

 K-Y,, 	 (21) 

Then, making the substitution y ss(C(I-A)-i  L+M)h  given in 
Eq. (19), the expected steady-state value of x,, can be writ- 25  
ten as a function of h 

xx,_ (I—A xq +K_Cx¢4xq)-1  K_(C(I—A) -1  L+M)h 	 (22) 

The steady-state augmented state estimation error bias can 
then be found, and partitioned into error bias information for 30 
the original state vector, R", and the health parameter vector, 
hss, by combining Eqs. (12), (14), (1S) and (22) to yield 

xxh'fl"t = EL^xh,ssxxh,ss] = E[tr{zxh ssz h,,,j] 	
(25) 

= E[trlG hhhT Gxh)] 

= trd G h - E[hhT  ]Gh~ 
II
`` 
	Ph 

= tr]C hPhG h) 

z2 	T 	 j = E tr" 	 (26) 
ZJl"t = E[z„zss 	Z„z„ }J 

= E[tr]Gz hhT  GT )] 

= -1 Gz  - E[hhT  ] GT 
Ph 

= tr{GzPhGT ) 

(23) 
35 where the matrix Ph, defined as E[hhT], reflects a priori or 

historical knowledge of the covariance in the health param-
eters across all engines. If available, it can be used to predict 
the sum of squared estimation errors biases as shown in (25) 
and (26). 

40 	Next, derivations are presented for the augmented state 
estimate and auxiliary parameter estimate covariance matri-
ces, Pxh,k, and Pz,k, respectively. These matrices will be cal-
culated as a function of the reduced-order state vector esti-
mation covariance matrix, Px4,k,  which is defined as 

45 

	

Px9,k = EI (xxq,k — E[xxq,k])(xxq,k — E[xxg,k ])T 	
(27) 

I[  _ _ Exq k  _ 	_ ET  _ 	_. J  
xq,k 

50 
where the vector E x,7 k  is defined as the residual between Xxq,k, 
at time k and its expected value. Since E[zxq,k] --Rx q,_' Exq,k 
can be obtained by subtracting Eq. (2 1) from Eq. (11) 

55 

xxh,ss = E[xxh,k — xxh,k] 

xxh,ss = xxh,ss — xxh,ss 

zss 1 0 

h H 0 V 
xxh,ss = — 	*

t  Ixxq,ss — xxh,ss ~~"  

zss  

xxhs = hss I - 
1 o 

0 V*t 
(I — A,+ K_Cxg Axq)

-1 
 ... x 

K_[C(I—A) — 'L +M] ...— 	h 

~ (I —A)_ 'L  ______________________--__ 	I
Gsh 

xss  
xxh,ss = — = G hh 

hss 

The steady-state auxiliary parameter estimation error bias can 
also be derived by combining Eqs. (12), (14), (20) and (22) to 
yield 

60 

£xq,k = xxq,k - E[xxq,k 1 	 (28) 

= xxq,k — xxq,ss 

= Asgzxq k—j + K— (Yk — Cxq Axgxxq k—t) ... — 

xxq.k 

Zss = E[Zk — Zk] 
	

(24) 	 (Axg xxq,ss + K_ (Yss — Cxg Axgxxq,ss)) 

xxq,ss 

Zss = Zss — Zss 

zss = [ F NVt] xx,, - zss 
	 65 	 = (Axq  — K_Cxg Axq)(zxq,k- 1  — xxq,,,) + K_ (Yk — Yss) 
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Making the substitutions exq,k_ 1  'xq,k_ i -xxq,_, and vk  y, 
 yields 

Exs,k(4xs K_C  e4,)Ex,,,,  +K-v, 	 (29) 

The estimation covariance matrix Pxq k  is then calculated as 

Px4,k = E [£xg,k S  g,k] 	 (30) 

- [Ax, - K_Cx4Ax,1E[£x4,k-1£ hk-t] ... x 

[A, -  K- CxgA,]T  ... + 

[Axg - K-CxaAxa]E[£xa,k-IVT]K~ ... + 

K_E[Vk£ h,k—tl[Ax, - K~ CxgA, ... + 

K-E[Vk Vk ]K7  

The substitutions E[exq,k-1Exg,k—iTj-Pxq,k-i,  and E[vkvkT]=R 
can be made in the above equation. Since Exq k_ 1  and vkT  are 
uncorrelated, the substitution E[Exq ,k_ 1 vkT]=E[vkExq,k_ 1 T]_0 
can also be made, producing 

P=s,k [,4xs  K-C,4xsIP=sk-,[,4xq  K-C 44x4] 7+ 
K_RK_ T 	 (31) 

At steady-state operating conditions Pxq k _ i=Pxq k . Making 
this substitution in (31) produces the following Ricatti equa-
tion which can be solved for Pxq,k : 

10 
Once Eqs. (25), (26), (33) and (35) are obtained, they may 

be used to analytically calculate the mean sum of squared 
estimation errors over all engines by combining the respec-
tive estimation error bias and estimation variance information 

5 as previously shown in Eq. (16). The mean augmented state 
vector sum of squared estimation errors, SSEE(zxh,,, et), and 
the mean auxiliary parameter vector sum of squared estima-
tion errors, SSEE(zxh,,, et), become 

10 

SSEE(z xh, fl e ) = zxh Jdeer + tr{Pxh,k  1 	 (36) 

ll  
= tri C h PhC h + Fzh,kl 

15 	SSEE(z fleer ) _ }leer +tr{P~kl 

= tY]Cz Ph CT + P2,k] 

If required, a weighted sum approach can be applied to 
20 normalize the contributions of individual auxiliary parameter 

estimation errors. This is often necessary as there may be 
several orders of magnitude difference between the auxiliary 
parameters of interest. A weighted sum approach prevents 
domination by individual parameters. In this study a diagonal 

25 auxiliary parameter weighting matrix, W., is applied based on 
the inverse of auxiliary parameter variance (obtained from the 
main diagonal of the auxiliary parameter covariance matrix, 
Pz) 

P=s,k [,4xs K-C,4xsIP=s.k[,4xs K-C s4xs] 7+  K_RK_7 

It should be noted that Pxs,k  obtained by solving (32) will be 
identical to P-produced via Eq. (9) if the system's actual state 
process noise covariance is identical to the Q q  assumed in the 
design of the Kalman filter. However, Q is often treated as a 
Kalman filter design parameter to provide acceptable 
dynamic response. For the purpose of this derivation, we have 
assumed a steady-state operating condition where the state 
variables and health parameters are invariant, and thus the 
actual system process noise is zero (i.e., wxh ,k-0). In this case 
Pxq k  will not equal P_ Once P-,, k  is obtained, it can be used 
to calculate Pxh,k, the covariance of zx,,,k, which is defined as 

0/ 0 T 	 (33) 
Pxh,k - [0 

V1, IPx4,k[0 V.} ] 

The augmented state vector estimation covariance given in 
Eq. (33) can be partitioned into covariance information for the 
original state vector, Px,k  (upper left corner of the Pxh,k 
matrix), and the health parameter vector, Pfi, k  (lower right 
corner of the Pxh k  matrix) 

P~ k 	 (34) 

Pzhk ... 	Ph,k  

The Pxq k  matrix from Eq. (32) can also be used to calculate 
Pz,, the covariance in the estimation of zk, which is equivalent 
to E[(2k  E[2k])(2k  E[2k])T] 

P2,k 1FNV*t]Pxvk[FNV*t] 7 	 (35) 

The variance in the estimates Xxh,x  and 2, can be obtained from 
the diagonals of the covariance matrices produced by (33) and 
(35) respectively. 

(37) 

P

z

, 11  0 	0 -

1 

Wz =~ 0 	0 

35 	 0 	0 P ;; 

W. is then applied to calculate of a "weighted" sum of auxil-
iary parameter squared estimation errors given as 

40 	
wsSEE(2flee ,)=tr{w[G Ph G T+P2,J] 	 (38) 

From Eqs. (23), (24), (33) and (35) it can be observed that 
both bias and variance are affected by the selection of the 
transformation matrix, V*. The sum of squared estimation 
error terms derived in this section give rise to an optimization 

45 problem: selecting V* to minimize the squared estimation 
error in the Kalman filter produced parameter estimates. This 
could include health parameter estimates, auxiliary param-
eter estimates, or a combination of parameters. Although 
there is no known closed form solution for optimally selecting 

50 the V* matrix to satisfy the objective of minimizing estima-
tion errors, a multi-parameter iterative search method has 
been developed to perform this task, and will be described in 
the next section. 

Prior to initiating the search for an optimal V*, specific 
55 system design information must be defined or obtained. This 

includes specifying the auxiliary parameters to be estimated, 
generating system state space equations at a fleet average 
(50% deteriorated) engine trim point, defining measurement 
noise covariance matrix, R, defining augmented state process 

60 noise covariance matrix, Q h, and defining fleet average 
health parameter covariance, P h . 

Some additional clarification is provided regarding the 
selection of Ph  and Qsh  as the distinction between these two 
ovariance matrices may not be immediately obvious. P h  

65 defines the expected health parameter covariance across all 
engines. It may be based on past knowledge gained from 
engine gas path analysis programs and/or historical studies of 

(32) 30 
P, = [F(r - A) - 'L+ N]Ph  [F(r - A)- 'L+ NI T  
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engine module performance deterioration. Conversely, Qsh 

	parameter covariance matrix, P h , is defined as a diagonal 
defines the expected process noise covariance in the state 	matrix with all diagonal elements equal to 0.0004. 
variables and health parameters of an individual engine, at a 

	
Next, the estimation accuracy of the systematic approach 

single discrete time step, k. The selection of Qsh  will directly 
	

for selecting Kalman filter tuning parameters will be com- 
impact the dynamic response and the variance of the esti-  5 pared to the conventional approach of selecting a sub-set of 
mates generated. 	 health parameters to serve as tuners (the seven health param- 

After the necessary system information has been obtained, 	eters denoted with "*" in FIG. 2), and the singular value 
the search for an optimal transformation matrix to minimize 

	
decomposition approach to tuner selection. FIG. 5 shows a 

the Kalman filter sum of squared estimation errors can com- 	comparison of the theoretically predicted estimation errors 
mence. This is performed using the lsgnonlin function of the io (squared bias, variance, and total squared error) and experi- 
Matlab® Optimization Toolbox. This function applies an 	mentally obtained squared estimation errors for each of the 
iterative search to find the least squares solution of a user- 	three tuner selection approaches. T40 and T50 estimation 
specified multivariable optimization problem. A flow chart 	errors are shown in squared degrees Rankine, and Fn and 
depicting the steps in this optimal iterative search is shown in 

	
SmLPC estimation errors are shown in squared percent net 

FIG. 1, and a further description of each step is given below. 15 thrust and squared percent stall margin respectively. The 
Upon startup, an initial random guess of V * is generated. It 	experimental results were obtained through a Monte Carlo 

is selected such that the matrix Frobenius norm JJV *11F 1.This 	simulation analysis where the health parameters varied over a 
requirement is applied to help prevent convergence to a 	random distribution in accordance with the covariance 
poorly scaled solution. The reduced order state-space model 

	
matrix, Ph . The test cases were concatenated to produce a 

is then constructed, (Eq. (7)). The Kalman filter is then for-  20 single time history input which was provided to the 
mulated by first calculating the estimation covariance matrix, 	C-MAPSS linear discrete state space model given in Eq. (2), 
P_ (Eq. (9)), then calculating the Kalman gain matrix, K_ 	with an update rate of 15 ms. Each individual health param- 
(Eq. (10)). Next, the sum of squared estimation errors (Eq. 	eter test case lasted 30 s. 
(36)), or weighted sum of squared estimation errors (Eq. (38)) 

	
At the completion of each 30 s test case, the health param- 

is calculated. On each iteration the change in SSEE (or 25 eter vector input instantaneously transitioned to the next test 
WSSEE) relative to the previous iteration is assessed to deter- 	case. A total of 375 30 s test cases were evaluated, resulting in 
mine if convergence within a user specified tolerance has 	an 11,250 s input time history. Three separate Kalman filters 
been achieved. If convergence is not achieved then, V* is 	were implemented using the three tuner selection approaches. 
updated via the Matlab® lsgnonlin function, again requiring 

	
The experimental estimation errors were determined by cal- 

that JV*JVI, and then returning to again construct the 30 culating the mean squared error between estimated and actual 
reduced order state-space equations. If convergence is 	values during the last 10 s of each 30 s test case. The error 
achieved then he optimization routine returns the optimal 

	
calculation is based on only the last 10 s so that engine model 

value of V*, and ends. 	 outputs and Kalman estimator outputs have reached a quasi- 
The transformation matrix returned by the optimization 	steady-state operating condition prior to calculating the error. 

routine may not be unique. Thus, different matrices can be 35 This ensures that the experimental results are consistent with 
found which produce a global minimum of the objective 	the theoretically predicted estimation errors which were 
function. Experience has also shown that the optimization 

	
derived assuming steady-state operation. 

routine will usually return a V* matrix which satisfies, or 
	

From FIG. 5 it can be seen that the theoretically predicted 
nearly satisfies (i.e. within 5%), the global minimum of the 	and the experimentally obtained squared estimation errors 
objective function. However, in order to guard against poten-  40 exhibit good agreement. If the number of random test cases 
tial convergence to a local minimum, it is prudent to run the 	were increased to a suitably large number, it is expected that 
optimization routine multiple times, each time starting with a 	the theoretical and experimental results would be identical. It 
different initial guess for V*. This is only to assure the 	can also be seen that all three estimators are able to produce 
designer that the global minimum is achieved, not to produce 	unbiased estimates of the combustor exit temperature, T40; 
a consistent V*. It should be emphasized that the optimal 45 however, their estimates of LPT exit temperature, T50, net 
search for V* is only conducted off-line during the estimator 	thrust, Fn, and LPC stall margin, SmLPC, are biased. The 
designprocess. This calculation is not conducted as part of the 	encouraging finding is that the new systematic approach to 
on-line real-time Kalman filter implementation, and thus 	tuner selection significantly reduces the overall mean squared 
places no additional computational burden upon it. 	 estimation error compared to the other two approaches. Rela- 

In an applied example of the methods described herein, a 50 tive to the conventional approach of tuner selection the 
linearized cruise operating point extracted from the NASA 

	
experimental mean squared estimation errors in T40, T50, Fn 

Commercial Modular Aero-Propulsion System Simulation 	and SmLPC are reduced 76%, 82%, 80% and 63%, respec- 
(C-MAPSS) high-bypass turbofan engine model is used to 	tively. It can also be observed that the SVD tuner selection 
evaluate the new systematic tuner selection methodology. 	approach, which is designed to reduce the estimation error 
The linear model has two state variables, ten health param-  55 bias, does in fact reduce the sum of squared biases relative to 
eters, and three control inputs, all shown in FIG. 2. The 	the subset of health parameters approach. However, the SVD 
model's seven sensed outputs, and corresponding sensor 	approach is also found to increase the estimation variance, 
noise standard deviation, are shown in FIG. 3. The auxiliary 	which contributes to its overall mean squared estimation 
output parameters of interest to be estimated are shown in 	error. 
FIG. 4. The linear model is used as the truth model for this 60 	A visual illustration of the effect that tuner selection has on 
application example. The model is run open-loop, so all con- 	Kalman filter estimation accuracy can be seen in FIGS. 6-9, 
trol inputs remain at 0, i.e., they do not deviate from the trim 	which show actual and estimated results for the auxiliary 
value for the linear model and no actuator bias is present. 	parameters T40, T50, Fn and SmLPC respectively. Each plot 
Deviations in all ten health parameters are assumed to be 	shows a 300 s segment of the evaluated test cases. The step 
uncorrelated, and randomly shifted from their trim conditions 65 changes that can be observed in each plot every 30 s corre- 
with a standard deviation of ±0.02 (±2%). Since a parameter's 	spond to a transition to a different health parameter vector. 
variance is equal to its standard deviation squared, the health 

	
True model auxiliary parameter outputs are shown in black, 
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14 
and Kalman filter estimates are shown in red. In each figure 
the information is arranged top to bottom according to tuner 
selection based upon: a) a subset of health parameters; b) 
singular value decomposition; and c) the new systematic 
selection strategy. The information shown in these figures 
corroborates the information in FIG. 5; namely all three tuner 
selection approaches produce unbiased estimates of T40 
(FIG. 6), while the systematic tuner selection strategy yields 
a noticeable reduction in the total squared estimation error 
(squared bias plus variance) of all four auxiliary parameters. 

The presented systematic tuner selection strategy mini-
mizes the mean squared error of the on-line estimator at 
steady-state operating conditions, taking advantage of prior 
knowledge of engine health parameter distributions. As such 
it is somewhat analogous to the maximum a posteriori (MAP) 
estimation method which is commonly applied for ground-
based aircraft gas turbine engine gas path analysis. This leads 
to the question, how does the on-line Kalman filter estimation 
accuracy compare to MAP estimation accuracy? Prior to 
making this comparison the mathematical formulation of the 
MAP estimator is briefly introduced. Here a steady-state 
model of the Measurement process in the following form is 
applied 

yk Hhk+Vk 	 (39) 

where the matrix H relates the effects of the health parameter 
vector, h, to the sensed measurements, y. From Eq. (19), it can 
be seen that H is equivalent to C(I-A) -i  L+M. The maximum 
a posteriori (MAP) estimator follows the closed Form expres-
sion 

hk (Ph i+H7R-ice-i 
 H7R-iYx 	 (40) 

The MAP estimator is capable of estimating more 
unknowns than available measurements due to the inclusion 
of a priori knowledge of the estimated parameter covariance, 
Ph . However, the MAP estimator, unlike a Kalman filter, is not 
a recursive estimator and does not take advantage of past 
measurements to enhance its estimate at the current time step. 
Furthermore, the MAP estimator only considers a static rela-
tionship between system state variables and measured out-
puts—it does not consider system dynamics. Because of these 
differences a Kalman estimator with optimally selected tun-
ing parameters should outperform the MAP estimator How-
ever, under steady-state conditions, with minimal sensor 
noise the two estimation approaches should produce similar 
results. To test this theory, a MAP estimator was designed and 
its estimation accuracy was compared to a Kalman filter with 
tuning parameters optimally selected to minimize the estima-
tion errors in the health parameter vector h. First, the two 
estimators were designed and evaluated using the original 
sensor noise levels shown in FIG. 3. Next, the sensor noise 
levels were set to '/oth of their original levels, the estimators 
were re-designed, and the comparison was repeated. Monte 
Carlo simulation evaluations as previously described were 
applied (i.e., 375 random health parameter vectors, 30 s in 
duration, with estimation accuracy calculations based upon 
the last 10 s of each 30 s test case). Theoretical and experi-
mental estimation errors are shown in FIGS. 10 and 11 for the 
original noise and reduced noise levels, respectively. At origi-
nal noise levels the Kalman estimator is able to produce 
smaller estimation errors. However, at the reduced noise level 
the two estimation approaches are found to be nearly identi-
cal. This comparison validates that the Kalman estimation 
approach is indeed producing a minimum mean squared esti-
mation error as intended, while providing the capability to 
support real-time on-line estimation under dynamic operating 
scenarios. 

While the systematic tuner selection approach presented 
here appears promising for on-line Kalman filter based 
parameter estimation applications, there are several practical 
considerations which need to be assessed when applying such 

5 a technique. The optimization routine attempts to minimize 
the overall squared estimation error both bias and vari-
ance under steady-state operating conditions. The minimi-
zation of the estimation variance in particular can come at the 
expense of dynamic responsiveness of the Kalman filter. To 

io illustrate this consider the time history plots of actual versus 
estimated T40 shown in FIG. 12. The top plot shows Kalman 
filter estimation results using a tuning parameter vector sys-
tematically selected to minimize the error in four auxiliary 
parameters (T40, T50, Fn and SmLPC) as presented in the 

15 previous section. The bottom plot shows Kalman filter esti-
mation results using a tuning parameter vector systematically 
selected to minimize the estimation error in T40 only. At time 
100 s a step change in the health parameter input vector is 
introduced into the engine model; this allows the dynamic 

20 response of the two estimators to be compared. It can be 
observed that T40 estimation variance in the bottom plot is 
reduced, as is the mean steady-state estimation error (>300 s). 
This is not surprising since one would generally expect 
improved results when optimizing to minimize the error in a 

25 single parameter, as opposed to multiple parameters. How-
ever, the estimator shown in the bottom plot does require a 
significantly longer time to reach steady-state convergence. 
Conversely, the estimator designed to minimize the steady-
state error in four auxiliary parameters (top plot) is unable to 

30 place as much emphasis on T40 estimation variance reduc-
tion, but it is able to track dynamic changes in T40 more 
rapidly. This example illustrates the inter-dependence 
between estimation variance and responsiveness. Therefore, 
it is prudent for a designer to evaluate the Kalman filter to 

35 ensure that it tracks engine dynamics acceptably. If the 
dynamic response is unacceptable, the optimization routine 
can be re-run placing more weight on estimation error bias 
reduction, and less weight on variance reduction. 

In an embodiment, the present approach produces an opti- 
40 mal set of tuning parameters, not just at a single operating 

point but rather a globally optimal tuning parameter vector 
universally applicable over the range of operating conditions 
that an engine is expected to experience. Apotential approach 
to selecting a single "globally optimal' tuning parameter 

45 vector is to modify the optimization routine to minimize the 
combined estimation error over multiple engine operating 
points such as takeoff, climb and cruise. This would be a 
straightforward modification to the Matlab® optimization 
routine, but it would increase the computational time required 

50 to calculate the result. Since the systematic tuner selection 
process is only envisioned to be done once during the system 
design process, this will not impact the on-line execution 
speed of the Kalman filter. It is anticipated that the application 
of globally optimal tuners will result in some estimation 

55 accuracy degradation relative to tuners optimized for indi-
vidual operating points, although this has not yet been veri-
fied or quantified. 

A systematic approach to tuning parameter selection for 
on-line Kalman filter based parameter estimation has been 

60 presented. This technique is specifically applicable for the 
underdetermined aircraft engine parameter estimation case 
where there are fewer sensor measurements than unknown 
health parameters whichwill impact engine outputs. It creates 
and applies a linear transformation matrix, V*, to select a 

65 vector of tuning parameters which area linear combination of 
all health parameters. The tuning parameter vector is selected 
to be of low-enough dimension to be estimated, while mini- 
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mizing the mean-squared error of Kalman filter estimates. 
The multiparameter iterative search routine applied to opti-
mally select V * was presented. Results have shown that while 
the transformation matrix returned by the optimization rou-
tine is not unique (different matrices can be found which 
produce a global minimum of the objective function), the 
routine is effective in returning a transformation matrix which 
is optimal, or near optimal, regardless of its initial starting 
guess of the matrix. The efficacy of the systematic approach 
to tuning parameter selection was demonstrated by applying 
it to parameter estimation in an aircraft turbofan engine linear 
point model. It was found to significantly reduce mean 
squared estimation errors compared to the conventional 
approach of selecting a subset of health parameters to serve as 
tuners. In some parameters the mean squared estimation error 
reduction was found to be over 80%. These estimation 
improvements were theoretically predicted and experimen-
tally validated through Monte Carlo simulation studies. 

The systematic approach to Kalman filter design may be 
applicable for a broad range of on-board aircraft engine 
model-based applications which produce estimates of 
unmeasured parameters. This includes model based controls, 
model-based diagnostics, and on-board life usage algorithms. 
It also may have benefits for sensor selection during the 
engine design process, specifically for assessing the perfor-
mance estimation accuracy benefits of different candidate 
sensor suites. 

The methods and processes described herein may be per-
formed by a hardware or software system or combination 
thereof. For example, a computing system may be configured 
to receive input signals from an engine by way of a plurality 
of sensors, and model the health parameters using the Kalman 
filter approach described herein. The computing system may 
comprise a processor or CPU, a memory, and a storage 
device, as is known in the art. The computing system may 
further include a logic configured to receive the input signals 
from the engine and determine estimates for unknown param-
eters. The computing system may modify the engine control 
based on an estimated unknown parameter or parameters 
determined by the logic using the methods and processes 
described herein. 

As used herein, the term "logic" includes but is not limited 
to a software, a firmware, an executable program, a hardware 
or hard-wired circuit, or combinations thereof. For example, 
based on a desired application or needs, logic may include a 
software controlled microprocessor, discrete logic like an 
application specific integrated circuit (ASIC), an analog cir-
cuit, a digital circuit, a programmed logic device, a memory 
device containing instructions, or the like. Logic may include 
one or more gates, combinations of gates, or other circuit 
components. Logic may also be fully embodied as software. 
Where multiple logical logics are described, it may be pos-
sible to incorporate the multiple logical logics into one physi-
cal logic. Similarly, where a single logical logic is described, 
it may be possible to distribute that single logical logic 
between multiple physical logics. 

Although the preferred embodiments of the present inven-
tion have been illustrated in the accompanying drawings and 
described in the foregoing detailed description, it is to be 
understood that the present invention is not to be limited to 
just the preferred embodiment disclosed, but that the inven-
tion described herein is capable of numerous rearrangements, 
modifications and substitutions without departing from the 
scope of the claims hereafter. 

We claim: 
1. A method of optimizing the estimated performance and 

estimated condition of an engine comprising: 

16 
estimating a plurality of engine parameters based on a 

plurality of sensor inputs, wherein said engine param-
eters include a set of health parameters and a set of 
performance parameters, and wherein the number of 

5 	health parameters in said set is greater than the number 
of sensors; 

determining a relationship between said set of health 
parameters and a tuning vector, wherein said tuning 
vector is a linear combination of said entire set of health 

10 	parameters; 
determining at least one state equation in terms of said 

tuning vector; 
solving said at least one state equation to determine an 

15 	estimate for said set of health parameters; 
estimating said performance parameters based on said 

health parameter estimates; 
calculating the error in said estimation of said health 

parameters and said performance parameters; 
20 	optimizing said relationship between said tuning vector 

and said set of health parameters based on said error 
calculation; 

determining an optimized tuning vector based on said opti-
mized relationship; 

25 	determining at least one optimized state equation in terms 
of said optimized tuning vector; 

solving said at least one optimized state equation to deter-
mine an optimized estimate of said engine parameters. 

2. The method of claim 1, wherein calculating the error 
30 includes calculating the mean estimation error. 

3. The method of claim 1, wherein said performance 
parameters are a function of said health parameters. 

4. The method of claim 1, wherein said relationship 
between said tuning vector and said set of health parameters 

35 is optimizedto minimize the error in estimating a given subset 
of said health parameters. 

5. The method of claim 1, wherein said relationship 
between said tuning vector and said set of health parameters 
is optimized to minimize the error in estimating a given subset 

40 of said performance parameters. 
6. The method of claim 1, wherein said relationship 

between said tuning vector and said set of health parameters 
is optimized to minimize the error in estimating a combina-
tion of a given subset of said health parameters and a given 

45 subset of said performance parameters. 
7. The method of claim 1, wherein the dimension of said 

tuning vector is less than or equal to the number of said 
sensors. 

8. The method of claim 1, wherein said relationship 
5o between said health parameters and said tuning vector is 

defined by a matrix. 
9. The method of claim 8, wherein a first dimensions of said 

matrix is equal to the dimension of said tuning vector. 
10. The method of claim 9, wherein a second dimension of 

55 said matrix is less than or equal to the number of said health 
parameters. 

11. The method of claim 1 further comprising the step of 
modifying control of said engine based on said optimized 
estimate of said engine parameters. 

60 	12. The method of claim 1 wherein solving said state equa- 
tion includes constructing a Kalman filter. 

13. An optimal tuning system comprising: 
a plurality of sensors capable of sensing engine param-

eters; 
65 	a logic in operable communication with said plurality of 

sensors and configured to receive input from said plu- 
rality of sensors, said logic configuredto determine opti- 
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mized parameters related to the estimated performance 
and condition of said engine; 

wherein said logic estimates a plurality of engine param-
eters based on said sensors, said engine parameters 
including a set of health parameters and a set of perfor-
mance parameters, and wherein the number of health 
parameters in said set is greater than the number of 
sensors; 

wherein said logic determines a relationship between said 
set of health parameters and a tuning vector that is a 
linear combination of said entire set of health param-
eters; 

wherein said logic determines at least one state equation in 
terms of said tuning vector and solves said at least one 
state equation to determine an estimate for said set of 
health parameters; 

wherein said logic estimates said performance parameters 
based on said health parameter estimates and calculates 
the error in said estimation of said health parameters and 
said performance parameters; 

wherein said logic optimizes said relationship between 
said tuning vector and said set of health parameters 
based on said error calculation; 

wherein said logic determines an optimized tuning vector 
based on said optimized relationship; 

wherein said logic determines at least one optimized state 
equation in terms of said optimized tuning vector 

wherein said logic solves said at least one optimized state 
equation to determine an optimized estimate of said 
engine parameters. 

18 
14. The optimal tuning system of claim 13, wherein said 

logic comprises multiple logics. 
15. The optimal tuning system of claim 14, wherein said 

optimized tuning vector is defined within one of said multiple 
5  logics. 

16. The optimal tuning system of claim 13, wherein said 
logic calculates the mean estimation error in said estimation 
of said health parameters and said performance parameters. 

17. The optimal tuning system of claim 13, wherein said 

10 performance parameters are a function of said health param-
eters. 

18. The optimal tuning system of claim 13, wherein said 
logic optimizes said relationship between said tuning vector 
and said set of health parameters to minimize the error in 

15  estimating a given subset of said health parameters. 
19. The optimal tuning system of claim 13, wherein said 

logic optimizes said relationship between said tuning vector 
and said set of health parameters to minimize the error in 
estimating a combination of a given subset of said health 

20  parameters and a given subset of said performance param-
eters. 

20. The optimal tuning system of claim 13, wherein said 
logic solves said state equation by constructing a Kalman 
filter. 

25 	21. The optimal tuning system of claim 13, wherein said 
logic is capable of modifying control of said engine based on 
said optimized estimate of said engine parameters. 

22. The optimal tuning system of claim 13, wherein the 
dimension of said tuning vector is less than or equal to the 

30 number of said sensors. 
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